已知函数,记的内角的对边长分别为,若,求的值。
(1)求 (2).
已知函数的图象在与轴交点处的切线方程是. (I)求函数的解析式; (II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.
某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立. (I)设该选手参赛的轮次为,求的分布列和数学期望; (Ⅱ)对于(I)中的,设“函数是偶函数”为事件D,求事件D发生的概率.
函数(A>0,>0)的最小值为-1,其图象相邻两个对称中心之间的距离为. (1)求函数的解析式 (2)设,则,求的值.
已知椭圆的左、右焦点分别是、,是椭圆右准线上的一点,线段的垂直平分线过点.又直线:按向量平移后的直线是,直线:按向量平移后的直线是(其中)。 (1) 求椭圆的离心率的取值范围。 (2)当离心率最小且时,求椭圆的方程。 (3)若直线与相交于(2)中所求得的椭圆内的一点,且与这个椭圆交于、两点,与这个椭圆交于、两点。求四边形ABCD面积的取值范围。