已知函数的两条切线PM、PN,切点分别为M、N.(I)当时,求函数的单调递增区间;(II)设|MN|=,试求函数的表达式;(III)在(II)的条件下,若对任意的正整数,在区间内总存在成立,求m的最大值.
选修4—1:几何问题选讲如图,已知AB是⊙O的直径,弦CD与AB垂直,垂足为M,E是CD延长线上的一点,且AB=10,CD=8,3DE=4OM,过F点作⊙O的切线EF,BF交CD于G(Ⅰ)求EG的长;(Ⅱ)连接FD,判断FD与AB是否平行,为什么?
选修4—5:不等式选讲已知关于的不等式对于任意的恒成立(Ⅰ)求的取值范围;(Ⅱ)在(Ⅰ)的条件下求函数的最小值.
选修4—4:极坐标与参数方程在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点、的极坐标分别为、,曲线的参数方程为为参数).(Ⅰ)求直线的直角坐标方程;(Ⅱ)若直线和曲线C只有一个交点,求的值.
(本小题满分12分)已知函数,.(Ⅰ)求函数的极值;(Ⅱ)若对有恒成立,求实数的取值范围..
(本小题满分12分)如图,圆与轴相切于点,与轴正半轴相交于两点(点在点的左侧),且.(Ⅰ)求圆的方程;(Ⅱ)过点任作一条直线与椭圆相交于两点,连接,求证:.