如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.
已知椭圆G:过点,,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧. (1)求椭圆G的方程; (2)求四边形ABCD 的面积的最大值.
已知圆M的圆心在直线上,且过点、. (1)求圆M的方程; (2)设P为圆M上任一点,过点P向圆O:引切线,切点为Q.试探究: 平面内是否存在一定点R,使得为定值?若存在,求出点R的坐标;若不存在,请说 明理由.
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3. (1)求椭圆C的方程; (2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
已知一个圆经过直线l:与圆C:的两个交点,并且面积有最小值,求此圆的方程.
已知函数. (1)若曲线的一条切线的斜率是2,求切点坐标; (2)求在点处的切线方程.