设, .(1)当时,求曲线在处的切线方程;(2)如果存在,使得成立,求满足上述条件的最大整数;(3)如果对任意的,都有成立,求实数的取值范围.
已知函数在区间,上单调递增,在区间[-2,2]上单调递减.(1)求的解析式;(2)设,若对任意的x1、x2不等式恒成立,求实数m的最小值。
如图,已知平面是正三角形,且.(1)设是线段的中点,求证:∥平面; (2)求直线与平面所成角的余弦值.
一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求:(1)连续取两次都是红球的概率;(2)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,但取球次数最多不超过4次,求取到黑球的概率。
数列对任意,满足.(1)求数列通项公式;(2)若,求的通项公式及前项和.
已知,且、、是正数,求证:.