设命题;命题 ,使得,如果命题或为真命题,命题且为假命题,求实数的取值范围.
(本小题满分13分)已知方程.(1)若此方程表示圆,求的取值范围;(2)若(1)中的圆与直线相交于M,N两点,且OMON(O为坐标原点)求值;(3)在(2)的条件下,求以MN为直径的圆的方程.
(本小题满分13分)已知全集U=R,集合A={x|x2+(a-1)x-a>0},B={x|(x+a)(x+b)>0(a≠b)},M={x|x2-2x-3≤0}.(1)若∁UB=M,求a,b的值;(2)若-1<b<a<1,求A∩B;(3)若-3<a<-1,且a2-1∈∁UA,求实数a的取值范围.
(本小题满分13分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程; (3)当直线l的倾斜角为45º时,求弦AB的长.
(本小题满分12分)数列{an}中,a1=,前n项和Sn满足Sn+1-Sn=(n∈N*).(1)求数列{an}的通项公式an以及前n项和Sn;(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
(本小题满分12分)已知正四棱锥P-ABCD如图.(1)若其正视图是一个边长分别为的等腰三角形,求其表面积S、体积V;(2)设AB中点为M,PC中点为N,证明:MN//平面PAD.