已知椭圆的方程为,双曲线的两条渐近线为,,过椭圆的右焦点作直线,使⊥,又l与交于点,设与椭圆的两个交点由上至下依次为.(1)当与夹角为60°,双曲线的焦距为4时,求椭圆的方程及离心率;(2)求的最大值.
如图所示,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点. (1)求证:B1E⊥AD1; (2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;
(高考真题)如图,在三棱柱中,侧棱垂直于底面,,,BC=1,、分别为、的中点. (1)求证:平面平面; (2)求证:平面; (3)求三棱锥的体积.
如图,已知四边形是正方形,平面,∥,,,,分别为,,的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面平面; (Ⅲ)(有点难度哦)在线段上是否存在一点,使平面?若存在,求出线段的长;若不存在,请说明理由.
如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点. (1)求证:DE∥平面ABC; (2)求三棱锥E-BCD的体积.
如图,△是等边三角形, ,,,,分别是,,的中点,将△沿折叠到△的位置,使得.求证:平面平面;