已知椭圆的方程为,双曲线的两条渐近线为,,过椭圆的右焦点作直线,使⊥,又l与交于点,设与椭圆的两个交点由上至下依次为.(1)当与夹角为60°,双曲线的焦距为4时,求椭圆的方程及离心率;(2)求的最大值.
已知圆C:. (1)写出圆C的标准方程;(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且以AB为直径的圆过原点.若存在,求出直线m的方程; 若不存在,说明理由.
如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.
如图,这是一个奖杯的三视图,(1)请你说明这个奖杯是由哪些基本几何体组成的;(2)求出这个奖杯的体积(列出计算式子,将数字代入即可,不必求出最终结果).
已知x+y-3=0,求的最小值.
已知函数. (1)求的单调区间; (2)求在区间上的最小值; (3)设,当时,对任意,都有成立,求实数的取值范围。