如图,在平面直角坐标系中,已知点,轴于A.将点B绕原点逆时针旋转90°后记作点,作出旋转后的.(1)点的坐标为 ;(2)求点B所经过的路径长.
(8分)如图,四边形是平行四边形,点.反比例函数的图象经过点,点是一次函数的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数的图象一定过点;(3)对于一次函数,当的增大而增大时,确定点横坐标的取值范围(不写过程,直接写出结果).
(8分)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110米,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:≈1.414,≈1.732).
今年我市的蔬菜市场从5月份开始,由于本地蔬菜的上市,某种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数:.(1)求出5月份y与x所满足的二次函数关系式;(2)若5月份的进价m(元/千克)与周数x所满足的函数关系为.求出5月份销售此种蔬菜一千克的利润W(元)与周数x的函数关系式,并求出在哪一周销售此种蔬菜一千克的利润最大?且最大利润是多少?
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.
“校园手机”现象越来越受到社会的关注,小记者刘红随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:(1)求这次调查的总人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数;(3)针对随机调查的情况,刘红决定从初三一班表示赞成的4位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率.