(Ⅰ) 以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为,它与曲线为参数)相交于两点A和B, 求|AB|; (Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:,曲线C2的参数方程为:(为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程
.已知定义在R上的二次函数满足,且的最小值为0,函数,又函数。(I)求的单调区间; (II)当≤时,若,求的最小值;(III)若二次函数图象过(4,2)点,对于给定的函数图象上的点A(),当时,探求函数图象上是否存在点()(),使、连线平行于轴,并说明理由。(参考数据:e=2.71828…)
设椭圆:的左、右焦点分别是,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于两点,求的最大值.
为进一步保障和改善民生,国家“十二五”规划纲要提出,“十二五”期间将提高住房保障水平,使城镇保障性信房覆盖率达到20℅左右. 某城市2010年有商品房万套,保障性住房万套(). 预计2011年新增商品房万套,以后每年商品新增量是上一年新增量的倍,问“十二五”期间(2011年~2015年)该城市保障性住房建设年均应增加多少万套才能使覆盖率达到?(,,,)
已知函数为奇函数。(I)证明:函数在区间(1,)上是减函数;(II)解关于的不等式。
直四棱柱中,底面是等腰梯形,,,为的中点,为中点.(1) 求证:;(2) 若,求与平面所成角的正弦值.