已知函数与(1)设直线分别相交于点,且曲线和在点处的切线平行,求实数的值;(2)为的导函数,若对于任意的,恒成立,求实数的最大值;(3)在(2)的条件下且当取最大值的倍时,当时,若函数的最小值恰为的最小值,求实数的值
(本小题满分12分) 如图,平行四边形中,,将沿折起到的位置,使平面平面 (I)求证:; (Ⅱ)求三棱锥的侧面积.
如图,棱柱的侧面是菱形, (Ⅰ)证明:平面平面; (Ⅱ)设是上的点,且平面,求的值.
已知平面//平面,AB、CD是夹在、间的两条线段,A、C在内,B、D在内,点E、F分别在AB、CD上,且,求证:.
(本题满分为12分) 如图所示:已知⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作于E,求证:.
(本题满分为10分) 在四面体ABCD中作截面PQR,若PQ,CB的延长线交于M;RQ,DB的延长线交于N;RP,DC的延长线交于K,求证:M、N、K三点共线.