设椭圆 E 的方程为 x 2 a 2 + y 2 b 2 = 1 a > b > 0 ,点 O 为坐标原点,点 A 的坐标为 a , 0 ,点 B 的坐标为 0 , b ,点 M 在线段 A B 上,满足 B M = 2 M A ,直线 O M 的斜率为 5 10 .
(Ⅰ)求 E 的离心率 e ; (Ⅱ)设点 C 的坐标为 0 , - b , N 为线段 A C 的中点,证明: M N ⊥ A B .
已知数列, 满足条件:, .(1)求证数列是等比数列,并求数列的通项公式;(2)求数列的前项和,并求使得对任意N*都成立的正整数的最小值.
已知、、分别为的三边、、所对的角,向量,,且.(1)求角的大小;(2)若,,成等差数列,且,求边的长.
已知等差数列{}中,,前项和.(1)求通项;(2)若从数列{}中依次取第项、第项、第项…第项……按原来的顺序组成一个新的数列{},求数列{}的前项和.
已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量,, .(1)若//,求证:ΔABC为等腰三角形; (2)若⊥,边长,角,求ΔABC的面积 .
已知是定义在区间上的奇函数,且,若时,有.(1)解不等式:;(2)若不等式对与恒成立,求实数的取值范围.