某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数的分布列与期望.
试用随机数把a,b,c,d,e五位同学排成一列.
已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4},分别从集合P和Q中任取一个数作为a和b的值,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
同时抛掷两颗骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5小于10的概率;(3)点数之和大于3的概率.
已知圆C的方程为,点A,直线:(1)求与圆C相切,且与直线垂直的直线方程;(2)O为坐标原点,在直线OA上是否存在异于A点的B点,使得为常数,若存在,求出点B,不存在说明理由.
已知圆C1:与圆C2:相交于A、B两点,(1)求公共弦AB所在的直线方程;(2)求圆心在直线上,且经过A、B两点的圆的方程.