在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=(Ⅰ)求角B的大小;(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1), 有最大值为3,求k的值.
(本小题满分12分) 如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点. (Ⅰ)试求椭圆的标准方程; (Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.
(本小题满分12分) 某建筑物的上半部分是多面体, 下半部分是长方体(如图). 该建筑物的正视图和侧视图(如图), 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成. (Ⅰ)求直线与平面所成角的正弦值; (Ⅱ)求二面角的余弦值; (Ⅲ)求该建筑物的体积.
(本小题满分12分) 2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
(1)写出该样本的众数和中位数(不必写出计算过程); (2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由; (3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望.
(本小题满分12分) 在中,角的对边分别为不等式对于一切实数恒成立. (Ⅰ)求角C的最大值. (Ⅱ)当角C取得最大值时,若,求的最小值.
(本小题满分14分)已知是定义在[-1,1]上的奇函数,当,且时有. (1)判断函数的单调性,并给予证明; (2)若对所有恒成立,求实数m的取值范围.