已知:在四边形ABCD中,AC = BD,AC与BD交于点O,∠DOC = 60°.(1)当四边形ABCD是平行四边形时(如图1),证明AB + CD = AC;(2)当四边形ABCD是梯形时(如图2),AB∥CD,线段AB、CD和线段AC之间的数量关系是_____________________________;(3)如图3,四边形ABCD中,AB与CD不平行,结论AB + CD = AC是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
某商店一次用600元购进2B铅笔若干枝,第二次又用600元购进该款铅笔,但这次每支进价是第一次进价的倍,购进数量比第一次少30支。(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕,获利不低于420元,问每支售价至少是多少元?
如图,铁路上A、B两点相距25km,C、D为两村庄,且DA⊥AB于A,CB⊥AB于B,若DA=10km,CB=15km,现在要在AB之间建一个中转站E,使C、D两村到E站的距离相等。求E应建在离A多远的地方?
化简求值:①简代数式,并从-1≤x≤2中选择一个你喜欢的整数代入,求出代数式的值;②已知,求有理数A、B的值。
计算或解方程:①;②.
某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.