(本题12分)已知等比数列{an}的公比q=3,前3项和S3=.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=处取得最大值,且最大值为a3,求函数f(x)的解析式.
在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系.的极坐标方程为.
(Ⅰ)写出的直角坐标方程;
(Ⅱ)为直线上一动点,当到圆心的距离最小时,求的直角坐标.
如图, A B 切 ⊙ O 于点 ,直线 A D 交 ⊙ O 于 D , 两点, B C ⊥ D E ,垂足为 C .
(Ⅰ)证明: ∠ C B D = ∠ D B A ; (Ⅱ)若 A D = 3 D C , B C = 2 ,求 ⊙ O 的直径.
设是等比数列,,的各项和,其中, (Ⅰ)证明:函数在内有且仅有一个零点(记为),且; (Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较与的大小,并加以证明.
已知椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的半焦距为 c ,原点 O 到经过两点 ( c , 0 ) , ( 0 , b ) 的直线的距离为 1 2 c . (Ⅰ)求椭圆 E 的离心率; (Ⅱ)如图, A B 是圆 M : ( x + 2 ) 2 + ( y - 1 ) 2 = 5 2 的一条直径,若椭圆 E 经过 A , B 两点,求椭圆 E 的方程.
设某校新、老校区之间开车单程所需时间为 T , T 只与道路畅通状况有关,对其容量为 100 的样本进行统计,结果如下:
(Ⅰ)求 T 的分布列与数学期望 E T ; (Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.