在平面直角坐标系中,直线y=kx+3经过点(-1,1),求不等式kx+3<0的解集.
如图,在□ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.
如图,AB是⊙O 的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.
如图,在Rt△ABC中,∠C=90,点D在AC边上.若DB=6, AD=CD,sin∠CBD=,求AD的长和tanA的值.
已知抛物线.(1)用配方法将化成的形式;(2)将此抛物线向右平移1个单位,再向上平移2个单位,求平移后所得抛物线的解析式.
如图,△ABC中,∠B=60,∠ACB=75,点D是BC边上一动点,以AD为直径作⊙O,分别交AB、AC于E、F,若弦EF的最小值为1,则AB的长为