已知一次函数 (b为常数)的图象与反比例函数的图象相交于点P(1,a). (I) 求a的值及一次函数的解析式;(II) 当x>1时,试判断与的大小.并说明理由.
某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类: A 类 - - 非常了解; B 类 - - 比较了解; C 类 - - 般了解; D 类 - - 不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息答案下列问题:
(1)本次共调查了 名学生;
(2)补全条形统计图;
(3) D 类所对应扇形的圆心角的大小为 ;
(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.
如图, AE / / BF , BD 平分 ∠ ABC 交 AE 于点 D ,点 C 在 BF 上且 BC = AB ,连接 CD .求证:四边形 ABCD 是菱形.
先化简,再求值: ( m 2 - 9 m 2 - 6 m + 9 - 3 m - 3 ) ÷ m 2 m - 3 ,其中 m = 2 .
如图,抛物线与轴交于、两点(点在点左边),与轴交于点.直线经过、两点.
(1)求抛物线的解析式;
(2)点是抛物线上的一动点,过点且垂直于轴的直线与直线及轴分别交于点、.,垂足为.设.
①点在抛物线上运动,若、、三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的的值;
②当点在直线下方的抛物线上运动时,是否存在一点,使与相似.若存在,求出点的坐标;若不存在,请说明理由.
一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量(件与售价(元件)为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:
(元件)
4
5
6
(件
10000
9500
9000
(1)求与的函数关系式(不求自变量的取值范围);
(2)在销售过程中要求销售单价不低于成本价,且不高于15元件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?
(3)抗疫期间,该商场这种商品售价不大于15元件时,每销售一件商品便向某慈善机构捐赠元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出的取值范围.