如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置,设BC=1,AC=,则顶点A运动到点A″的位置时,求:(1)点A经过的路线的长度;(2)点A经过的路线与直线l所围成的面积.(计算结果保留π)
如图1是一个供滑板爱好者滑行使用的U型池,图2是该U型池的横截面(实线部分)示意图,其中四边形AMND是矩形,弧AmD是半圆. (1)若半圆AmD的半径是4米,U型池边缘AB=CD=20米,点E在CD上,CE=4米,一滑板爱好者从点A滑到点E,求他滑行的最短距离(结果可保留根号); (2)若U型池的横截面的周长为32米,设AD为2x,U型池的强度为y,已知U型池的强度是横截面的面积的2倍,当x取何值时,U型池的强度最大?
有一段弯道是圆弧形的如图所示,道长12π米,弧所对的圆心角是81°,求这段圆弧的半径.
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD.
如图,A、B、C、D是⊙O上的四点,AB=DC,△ABC与△DCB全等吗?为什么?
如图,点A、B、C是⊙O上的三点,AB∥OC. (1)求证:AC平分∠OAB. (2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.