(本小题满分13分)已知数列,满足,且当()时,.令.(Ⅰ)写出的所有可能取值;(Ⅱ)求的最大值.
(本小题满分10分)选修4-1:几何证明选讲 如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT. (1)求证:; (2)若,试求的大小.
(本小题满分12分) 若函数f(x)=在[1,+∞上为增函数. (Ⅰ)求正实数a的取值范围. (Ⅱ)若a=1,求征:(n∈N*且n ≥ 2 )
(本小题满分12分) 已知圆上的动点,点Q在NP上,点G在MP上,且满足. (I)求点G的轨迹C的方程; (II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.
(本小题满分12分) 如图,在直三棱柱中,,是棱上的动点,是中点,,. (Ⅰ)求证:平面; (Ⅱ)若二面角的大小是,求的长.
(本小题满分12分) 按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).某校高一·一班50名学生在上学期参加活动的次数统计如条形图所示. (Ⅰ)求该班学生参加活动的人均次数; (Ⅱ)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率; (Ⅲ)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.(要求:答案用最简分数表示)