(本小题满分12分)某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率;(Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点. (1) 求证:CE∥平面PAB; (2) 求PA与平面ACE所成角的大小; (3) 求二面角E-AC-D的大小.
(本小题满分12分) 设函数f(x)=,其中向量,. (1)求f( )的值及f( x)的最大值。 (2)求函数f( x)的单调递增区间.
设曲线:上的点到点的距离的最小值为,若,, (1)求数列的通项公式; (2)求证:; (3)是否存在常数,使得对,都有不等式:成立?请说明理由.
已知函数,R. (1)求函数的单调区间; (2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存 在,说明理由.
已知向量, (1)求及; (2)若函数的最小值为,求的值.