(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点. (1) 求证:CE∥平面PAB; (2) 求PA与平面ACE所成角的大小; (3) 求二面角E-AC-D的大小.
抛物线的焦点为,过点的直线交抛物线于,两点. ①若,求直线的斜率; ②设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值.
经过作直线交曲线:(为参数)于、两点,若成等比数列,求直线的方程.
如图,四棱锥中,底面为平行四边形,,,⊥底面.①证明:平面平面; ②若二面角为,求与平面所成角的正弦值.
从集合的所有非空子集中,等可能地取出一个. ①记性质:集合中的所有元素之和为10,求所取出的非空子集满足性质的概率; ②记所取出的非空子集的元素个数为,求的分布列和数学期望.
在中,角的对边分别为,且. ①求角的大小; ②求的取值范围.