已知△的周长为,且. (Ⅰ)求边长的值; (Ⅱ)若(结果用反三角函数值表示).
求半径为4,与圆x2+y2―4x―2y―4=0相切,且和直线y=0相切的圆的方程.
已知四棱锥P-ABCD,底面ABCD是的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (Ⅰ)证明:DN//平面PMB; (Ⅱ)证明:平面PMB平面PAD;
已知直线经过点,且斜率为. (Ⅰ)求直线的方程; (Ⅱ)求与直线切于点(2,2),圆心在直线上的圆的方程.
已知空间四边形ABCD的各边及对角线都相等,AC和平面BCD所成角的余弦值.
(本小题12分)如图,设抛物线:的焦点为F,为抛物线上的任一点(其 中≠0),过P点的切线交轴于点. (1)若,求证; (2)已知,过M点且斜率为的直线与抛物线交于A、B两点,若,求的值.