已知曲线上动点到定点与定直线的距离之比为常数.(1)求曲线的轨迹方程;(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;(3)以曲线的左顶点为圆心作圆:,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.
设函数. (1) 当时,求函数的单调区间; (2) 当时,求函数在上的最小值和最大值.
已知函数, (1)若函数f(x)在R上单调递增,求实数a的取值范围; (2)若函数f(x)在区间(-1,1)上单调递减,求实数a的取值范围.
用长为18 m的钢条围成一个长方体容器的框架,如果所制的容器的长与宽之比为2∶1,那么高为多少时容器的容积最大?并求出它的最大容积.
已知,且,求证:.
已知函数在处取得极值-2. (1)求函数的解析式; (2)求曲线在点处的切线方程.