(本题8分,每小题各4分)(1); (2)
(本小题满分13分)某电视台的冲关电视节,要求参赛者从道选题中一次性随机抽取道题,至少独立的正确回答道题,方可进入下一关.已知道备选题中参赛者小福有道题能正确回答,道题不能正确回答;参赛者小州每题正确回答的概率都是,且每题正确回答与否互不影响. (Ⅰ)分别求小福、小州两人正确回答试题数的分布列,并计算其数学期望; (Ⅱ)请分析比较小福、小州两人谁进入下一关的可能性大.
(本小题满分13分)如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱,,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,O为AD中点. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的大小;
已知函数 (Ⅰ)求的单调增区间; (Ⅱ)若,求的最大值和最小值.
若数列的各项均为正数,,为常数,且. (1)求的值; (2)证明:数列为等差数列; (3)若,对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使,,成等差数列?若存在,用k分别表示一组p和r;若不存在,请说明理由.
函数. (1)若,求曲线在的切线方程; (2)若函数在上是增函数,求实数的取值范围; (3)设点,,满足,判断是否存在实数,使得为直角?说明理由.