化简、求值(1)化简(2) 已知均为锐角,,求的值
如图,要建一间体积为,墙高为的长方体形的简易仓库. 已知仓库屋顶每平方米的造价为500元,墙壁每平方米的造价为400元,地面造价忽略不计. 问怎样设计仓库地面的长与宽,能使总造价最低?最低造价是多少?
已知函数,其中.(Ⅰ)若函数为奇函数,求实数的值;(Ⅱ)若函数在区间上单调递增,求实数的取值范围.
已知公差不为0的等差数列的首项,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,求数列的前n项和.
设,集合,.(Ⅰ)当a=3时,求集合;(Ⅱ)若,求实数的取值范围.
设函数,其中。(Ⅰ)若,求a的值;(Ⅱ)当时,讨论函数在其定义域上的单调性;(Ⅲ)证明:对任意的正整数,不等式都成立。