已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值;⑶若过点可作曲线的三条切线,求实数的取值范围.
如图,多面体中,两两垂直,且,. (1)若点在线段上,且,求证:; (2)求多面体的体积.
已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为()
已知函数,则下列说法正确的为()
选修4—5:不等式选讲. 设函数. (1)若不等式的解集为,求的值; (2)若存在,使,求的取值范围.
选修4—4:坐标系与参数方程选讲. 已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极 坐标系,圆的极坐标方程为. (1)求圆的直角坐标方程; (2)若是直线与圆面的公共点,求的取值范围.