如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.(Ⅰ)证明:OD//平面ABC;(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图1,在四边形中,点C(1,3).(1)求OC所在直线的斜率; (2)过点C做CD⊥AB于点D,求CD所在直线的方程.
(本小题满分14分) 已知抛物线和直线没有公共点(其中、为常数),动点是直线上的任意一点,过点引抛物线的两条切线,切点分别为、,且直线恒过点. (1)求抛物线的方程; (2)已知点为原点,连结交抛物线于、两点, 证明:.
(本小题满分13分) 已知函数. (1)当且,时,试用含的式子表示,并讨论的单调区间; (2)若有零点,,且对函数定义域内一切满足的实数有. ①求的表达式; ②当时,求函数的图象与函数的图象的交点坐标.
(本小题满分12分) 已知数列的前n项和为 (n∈N*),且.数列满足,,,n=2,3,…. (Ⅰ)求数列 的通项公式; (Ⅱ)求数列 的通项公式; (Ⅲ)证明:对于 ,.
(本小题满分12分) 如图,是圆的直径,点在圆上,,交于点,平面,,. (1)证明:; (2)求平面与平面所成的锐二面角的余弦值.