过抛物线的对称轴上的定点,作直线与抛物线相交于两点.(I)试证明两点的纵坐标之积为定值;(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
已知,其中0< <2, (1) 解不等式。(2)若x>1时,不等式恒成立,求实数m的范围。
(本题满分13分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立 (I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式; (II)设,求数列的前n项和Bn;
如图,要计算西湖岸边两景点与的距离,由于地形的限制,需要在岸上选取和两点,现测得,,,,,求两景点与的距离(精确到0.1km).参考数据:
已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=-6,S6=-30.求数列{an}的前n项和的最小值.
已知函数,(1)求的值;(2)若,求的值域.