在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0。(Ⅰ)求的坐标;(Ⅱ)求圆关于直线OB对称的圆的方程。
(本小题10分) 设分别为椭圆的左、右两个焦点.(1)若椭圆上的点两点的距离之和等于4,求椭圆的方程和焦点坐标;(2)设点P是(1)中所得椭圆上的动点,。
(本小题10分) 已知双曲线中心在原点,且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为-,求此双曲线的方程.
(本小题10分) 设命题:对任意实数x,不等式恒成立;命题:方程表示焦点在轴上的双曲线.(1)若命题为真命题,求实数的取值范围;(2)若命题: 为真命题,且“”为假命题,求实数m的取值范围.
顶点在坐标原点,开口向上的抛物线经过点,过点作抛物线的切线交x轴于点B1,过点B1作x轴的垂线交抛物线于点A1,过点A1作抛物线的切线交x轴于点B2,…,过点作抛物线的切线交x轴于点. (I)求数列{ xn },{ yn}的通项公式; (II)设,数列{ an}的前n项和为Tn.求证:; (III)设,若对于任意正整数n,不等式…≥成立,求正数a的取值范围.
本题满分13分)已知函数. (I)当时,求函数的单调区间; (II)若函数的图象在点处的切线的倾斜角为,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?