首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 1546

已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N),数列{bn}的首项, b1=a,bn=an+n2(n≥2,n∈N).
(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;(3)当a>0时,求数列{an}的最小项.

登录免费查看答案和解析
相关知识点

已知数列{an},a12a1(a≠1的常数),an2an1n