已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N∗),数列{bn}的首项, b1=a,bn=an+n2(n≥2,n∈N∗).(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;(3)当a>0时,求数列{an}的最小项.
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是,. (1)求的值; (2)求的值.
关于的不等式和的解集分别为,若,求实数的取值范围。(本题10分)
不等式有且只有一个解,求实数的值。
已知集合,,且, 求实数的取值范围。(本题8分)
求不等式组的解集.(本题6分)