已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N∗),数列{bn}的首项, b1=a,bn=an+n2(n≥2,n∈N∗).(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;(3)当a>0时,求数列{an}的最小项.
某单位要在甲、乙、丙、丁4人中安排2人分别担任周六、周日的值班任务(每人被安排是等可能的,每天只安排一人). (1)共有多少种安排方法? (2)其中甲、乙两人都被安排的概率是多少? (3)甲、乙两人中至少有一人被安排的概率是多少?
已知函数,①求函数的单调区间;②求函数的极值,③当时,求函数的最大值与最小值.
已知复数,当实数取什么值时,复数是: (1)零; (2)虚数; (3)纯虚数.
已知椭圆:(),直线为圆:的一条切线并且过椭圆的右焦点,记椭圆的离心率为. (1)求椭圆的离心率的取值范围; (2)若直线的倾斜角为,求的大小; (3)是否存在这样的,使得原点关于直线的对称点恰好在椭圆上.若存在,求出的大小;若不存在,请说明理由.
已知是实数,函数. (1)求函数的单调区间; (2)设为在区间上的最小值. (i)写出的表达式;(ii)求的取值范围,使得.