设数列的前项和为。 (1)证明:为等比数列; (2)证明:求数列的通项公式; (3)确定与的大小关系,并加以证明。
数列{an}的前n项和为Sn,且Sn=(an-1).(1)求a1,a2;(2)证明:数列{an}是等比数列;(3)求an及Sn.
为了治理“沙尘暴”,西部某地区政府经过多年努力,到2009年底,将当地沙漠绿化了40%,从2010年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg2=0.3,最后结果精确到整数).
(1)在等比数列{an}中,a1+a2=324,a3+a4=36,求a5+a6的值;(2)在等比数列{an}中,已知a3a4a5=8,求a2a3a4a5a6的值.
设数列{an}是等差数列,a5=6.(1)当a3=3时,请在数列{an}中找一项am,使得a3,a5,am成等比数列;(2)当a3=2时,若自然数n1,n2,…,nt,… (t∈N*)满足5<n1<n2<…<nt<…使得a3,a5,,,…,,…是等比数列,求数列{nt}的通项公式.
已知等比数列{an}中,a3=,S3=4,求a1.