设数列的前项和为。 (1)证明:为等比数列; (2)证明:求数列的通项公式; (3)确定与的大小关系,并加以证明。
(本小题满分12分) 在中,角,,所对的边分别为,,,向量,,且. (Ⅰ)求角的大小; (Ⅱ)若,,求的值.
(本小题满分13分) 在平面直角坐标系中,已知点,点在直线上运动,过点与垂直的直线和的中垂线相交于点. (Ⅰ)求动点的轨迹的方程; (Ⅱ)设点是轨迹上的动点,点,在轴上,圆(为参数)内切于,求的面积的最小值.
(本小题满分13分) 在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,,,,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短. (Ⅰ)若,每个工作台上只有一名工人,试确定供应站的位置; (Ⅱ)若,工作台从左到右的人数依次为,,,,,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
(本小题满分13分) 已知函数,. (Ⅰ)求的极值; (Ⅱ)若在上恒成立,求的取值范围.
(本小题满分12分) 在如图所示的几何体中,平面,∥,是的中点,,,. (Ⅰ)证明平面; (Ⅱ)求二面角的余弦值. 图7