设数列{an}是等差数列,a5=6.(1)当a3=3时,请在数列{an}中找一项am,使得a3,a5,am成等比数列;(2)当a3=2时,若自然数n1,n2,…,nt,… (t∈N*)满足5<n1<n2<…<nt<…使得a3,a5,,,…,,…是等比数列,求数列{nt}的通项公式.
已知圆C:x2+y2+2x﹣4y+3=0. (1)若圆C的切线在x轴、y轴上的截距相等,求切线方程; (2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.
已知关于x的一元二次方程x2﹣2(a﹣2)x﹣b2+16=0 (1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率. (2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.
(本小题满分10分)选修4—5:不等式选讲 已知a+b=1,对,b∈(0,+∞),+≥|2x-1|-|x+1|恒成立, (Ⅰ)求+的最小值; (Ⅱ)求x的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线:(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (Ⅰ)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程; (Ⅱ)设为曲线上的点,点的极坐标为,求中点到曲线上的点的距离的最小值.
(本小题满分10分)选修4—1:几何证明选讲 如图,已知与圆相切于点,半径,交于点, (Ⅰ)求证:; (Ⅱ)若圆的半径为3,,求的长度.