(本小题满分14分)已知中心在坐标轴原点O的椭圆C经过点A(1,),且点F(-1,0)为其左焦点.(I)求椭圆C的离心率;(II)试判断以AF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.
如图,在直三棱柱中,底面是正三角形,点是中点,,.(Ⅰ)求三棱锥的体积;(Ⅱ)证明:.
已知等比数列的各项均为正数,,公比为;等差数列中,,且的前项和为,.(1)求与的通项公式;(2)设数列满足,求的前项和.
给出定义在上的三个函数;,已知在处取最值.(1)确定函数的单调性;(2)求证:当时,恒有成立;(3)把函数的图象向上平移6个单位得到函数,试确定函数的零点个数,并说明理由.
已知数列的前项和为,点在直线上,数列满足:,且,前9项和为153.(1)求数列的通项公式;(2)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值;(3)设,,问是否存在,使得是公比为5的等比数列中的两项,且.若存在,求出的值;若不存在,请说明理由.
如图,在平面直角坐标系中,方程为的圆的内接四边形的对角线互相垂直,且分别在轴和轴上.(1)若四边形的面积为40,对角线的长为8,,且为锐角,求圆的方程,并求出的坐标;(2)设四边形的一条边的中点为,,且垂足为,试用平面解析几何的研究方法判断点是否共线,并说明理由.