(本小题共12分)某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(本小题满分12分) 已知与曲线、y轴于、为原点。 (1)求证:; (2)求线段AB中点的轨迹方程; (3)求△AOB面积的最小值。
(文科)已知抛物线的准线与轴交于点,为抛物线的焦点,过点斜率为的直线与抛物线交于两点。 (1)若,求的值; (2)是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,请说明理由。
(13分)(理科)已知双曲线与椭圆有公共焦点,且以抛物线的准线为双曲线的一条准线.动直线过双曲线的右焦点且与双曲线的右支交于两点. (1)求双曲线的方程; (2)无论直线绕点怎样转动,在双曲线上是否总存在定点,使恒成立?若存在,求出点的坐标,若不存在,请说明理由.
(文科)已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是. (I)证明为常数; (II)若动点满足(其中为坐标原点),求点的轨迹方程.
(理科)已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点. (1)若点的坐标分别是,求的最大值; (2)如图,点的坐标为,是圆上的点,点是点在轴上的射影,点满足条件:,求线段的中点的轨迹方程.