已知在直角坐标平面XOY中,有一个不在Y轴上的动点P(x,y),到定点F(0,)的距离比它到X轴的距离多,记P点的轨迹为曲线C(I)求曲线C的方程;(II)已知点M在Y轴上,且过点F的直线与曲线C交于A、B两点,若 为正三角形,求M点的坐标与直线的方程。
已知函数,(1) 化简 并求的振幅、相位、初相;(2) 当时,求f(x)的最小值以及取得最小值时x的集合.
已知α,β都是锐角,,, .
(1)化简: ;(2)若,求的值.
某厂生产一种仪器,由于受生产能力与技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率与日产量(件)(之间大体满足如框图所示的关系(注:次品率).又已知每生产一件合格的仪器可以盈利(元),但每生产一件次品将亏损(元).(其中c为小于96的常数)(1)若c=50,当x="46" 时,求次品率;(2)求日盈利额(元)与日产量(件)(的函数关系;(3)当日产量为多少时,可获得最大利润?
已知数列的前三项分别为,,,(其中为正常数)。设。(1)归纳出数列的通项公式,并证明数列不可能为等比数列;(2)若=1,求的值;(3)若=4,试证明:当时,.