已知在直角坐标平面XOY中,有一个不在Y轴上的动点P(x,y),到定点F(0,)的距离比它到X轴的距离多,记P点的轨迹为曲线C(I)求曲线C的方程;(II)已知点M在Y轴上,且过点F的直线与曲线C交于A、B两点,若 为正三角形,求M点的坐标与直线的方程。
如图,已知椭圆到它的两焦点F1、F2的距离之和为4,A、B分别是它的左顶点和上顶点.. (1)求此椭圆的方程及离心率; (2)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程.
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。 (1)求椭圆C的方程; (2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
设函数(提示 :) (1)若函数在定义域上是单调函数,求实数的取值范围; (2) 若,证明对任意的正整数n,不等式都成立.
如图, 在直三棱柱中,,, ,点的中点, (1)求证: (2)求证://平面; (3)求几何体的体积.