(本题满分13分)把一颗骰子投掷两次,记第一次出现的点数为,第二次出现的点数为(其中).(Ⅰ)若记事件“焦点在轴上的椭圆的方程为”,求事件的概率;(Ⅱ)若记事件“离心率为2的双曲线的方程为”,求事件的概率.
(本小题满分12分) 椭圆的离心率,过右焦点的直线与椭圆相交 于A、B两点,当直线的斜率为1时,坐标原点到直线的距离为 ⑴求椭圆C的方程; ⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有成 立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.
(本小题满分12分) 某商品进货价每件50元,据市场调查,当销售价格(每件x元)为50<x≤80时,每 天售出的件数为,若要使每天获得的利润最多,销售价格每件应定为多少元?
(本小题满分12分) 如图,矩形中,,,为上的点,且,. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求三棱锥的体积.
(本小题满分12分) 已知在数列中,,, (1)证明:数列是等比数列;(2)求数列的前n项和。
(本小题满分10分) 已知的面积是30,内角、、所对边长分别为、、,. (1)求;(2)若,求的值.