如图,沿等腰直角三角形的中位线,将平面折起,使得平面平面得到四棱锥. (1)求证:平面平面; (2)过的中点的平面与平面平行,试求平面与四棱锥各个面的交线所围成多边形的面积与三角形的面积之比。 (3)求二面角的余弦值。
已知向量 (1) 若求的值; (2) 设,求的取值范围.
已知函数,,其中. (1)设函数,若在区间是单调函数,求的取值范围; (2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得成立?若存在,求的值;若不存在,请说明理由.
在平面直角坐标系中,已知点,点P是动点,且三角形的三边所在直线 的斜率满足. (1)求点P的轨迹的方程; (2)设Q是轨迹上异于点的一个点,若,直线与交于点M,探究是否存点P使得和的面积满足,若存在,求出点P的坐标;若不存在,说明理由.
设为数列的前项和,对任意的,都有为常数,且. (1)求证:数列是等比数列; (2)设数列的公比,数列满足,求数列的通项公式; (3)在满足(2)的条件下,求数列的前项和.
在四棱锥中,,,平面,为的中点,. (1)求四棱锥的体积; (2)若为的中点,求证:平面平面; (3)求二面角的大小.