在四棱锥P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中点.求证:(1)CE∥平面PAD;(2)平面PBC⊥平面PAB.
(本小题满分14分),(1)求的值及集合、;(2)设全集,求的所有子集.
(本小题满分14分)设数列的前n项和为,已知.(1)求数列的通项公式;(2)令.用数学归纳法证明:;(3)设数列的前n项和为,若存在整数m,使对任意且,都有成立,求m的最大值.
(本小题满分13分)已知函数(1)讨论函数的极值情况;(2)设,当时,试比较与及三者的大小;并说明理由.
(本小题满分12分)设棋子在正四面体ABCD的表面从一个顶点移向另外三个顶点是等可能的,现投掷骰子根据其点数决定棋子是否移动:若投出的点数是偶数,棋子移动到另一个顶点;若投出的点数是奇数,则棋子不动.若棋子的初始位置在顶点A.求:(Ⅰ)投了2次骰子,棋子才到达顶点B的概率;(Ⅱ)记投了n次骰子,棋子在顶点B的概率为.求.
(本小题满分12分)如图,在底面为平行四边形的四棱锥P—ABCD中,,平面,且,点E是PD的中点.(1)证明:;(2)证明:平面AEC;(3)求二面角E—AC—B的大小.