一条双曲线 x 2 2 - y 2 = 1 的左、右顶点分别为 A 1 , A 2 ,点 P ( x 1 , y 1 ) , Q ( x 1 , - y 1 ) 是双曲线上不同的两个动点. (1)求直线 A 1 P 与 A 2 Q 交点的轨迹 E 的方程式; (2)若过点 H ( 0 , h ) ( h > 1 ) 的两条直线 l 1 和 l 2 与轨迹 E 都只有一个交点,且 l 1 ⊥ l 2 ,求 h 的值.
设为奇函数,为常数。 (1)求的值; (2)证明:在(1,+∞)内单调递增; (3)若对于[3,4]上的每一个的值,不等式恒成立,求实数的取值范围。
如图,在直三棱柱中,,为中点. (1)求证:; (2)求证: ∥平面; (3)求二面角的余弦值.
(12分)某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积. (Ⅰ)求学生小张选修甲的概率; (Ⅱ)记“函数为上的偶函数”为事件,求事件的概率; (Ⅲ)求的分布列和数学期望;
(12分)已知各项均为正数的数列的前n项和为,且成等差数列. (1)求数列的通项公式; (2)若,设求数列的前项和.
设函数,其中向量, (1)求的最小正周期与单调减区间; (2)在△ABC中,分别是角A、B、C的对边,已知,△ABC的面积为,求的值。