如图,已知斜四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.(1) 证明:C1C⊥BD;(2) 当的值为多少时,能使A1C⊥平面C1BD?请给出证明
(本小题满分13分) 如图,正三棱柱中,D是BC的中点, (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ)求三棱锥的体积.
(本小题13分) 已知函数. (Ⅰ)求函数图象的对称轴方程; (Ⅱ)求的单调增区间; (Ⅲ)当时,求函数的最大值,最小值.
(本小题满分13分) 在中,,. (Ⅰ)求角; (Ⅱ)设,求的面积.
(本小题共14分) 在单调递增数列中,,不等式对任意都成立. (Ⅰ)求的取值范围; (Ⅱ)判断数列能否为等比数列?说明理由; (Ⅲ)设,,求证:对任意的,.
(本小题共14分) 已知椭圆C:,左焦点,且离心率 (Ⅰ)求椭圆C的方程; (Ⅱ)若直线与椭圆C交于不同的两点(不是左、右顶点),且以为直径的圆经过椭圆C的右顶点A.求证:直线过定点,并求出定点的坐标.