设函数 (1)当时,求函数的极值; (2)当时,讨论函数的单调性; (3)若对任意及任意,恒有 成立,求实数的取值范 围.
已知椭圆C:,两个焦点分别为、,斜率为k的直线过右焦点且与椭圆交于A、B两点,设与y轴交点为P,线段的中点恰为B。(1)若,求椭圆C的离心率的取值范围。(2)若,A、B到右准线距离之和为,求椭圆C的方程。
设函数.(I)若是函数的极大值点,求的取值范围;(II)当时,若在上至少存在一点,使成立,求的取值范围.
已知数列中,是它的前项和,并且,.(Ⅰ)设,求证是等比数列(Ⅱ)设,求证是等差数列;(Ⅲ)求数列的通项公式.
已知函数在处取得极值.(Ⅰ)求实数的值;(Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.
等差数列的各项均为正数,,前项和为,为等比数列, ,且 .(Ⅰ)求与;(Ⅱ)求数列的前项和。