设函数,其中,已知曲线在点处的切线为轴.(1)若为的极值点,求的解析式;(2)若过点可作曲线的三条不同切线,求的取值范围.
已知命题:复数,复数,是虚数;命题:关于的方程的两根之差的绝对值小于;若为真命题,求实数的取值范围.
(1)已知点和,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹; (2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.
在中,角的对边分别为,且满足. (1)求角; (2)求的面积.
如图,已知椭圆:的离心率为 ,点为其下焦点,点为坐标原点,过的直线 :(其中)与椭圆相交于两点,且满足:. (1)试用 表示 ; (2)求 的最大值; (3)若 ,求 的取值范围.
设为正实数,函数. (1)若,求的取值范围;(2)求的最小值; (3)若,求不等式的解集.