(本小题满分14分)当x>0时,(1)证明f(X)为奇函数;(2)证明为R上的减函数;(3)解不等式.
(本小题满分14分) 已知函数,,且 (Ⅰ)求函数的定义域,并证明在定义域上是奇函数; (Ⅱ)对于恒成立,求的取值范围; (Ⅲ)当,且时,试比较与的大小.
(本小题满分14分) 已知椭圆的左、右焦点分别为,点是轴上方椭圆上的一点,且, , . (Ⅰ) 求椭圆的方程和点的坐标; (Ⅱ)判断以为直径的圆与以椭圆的长轴为直径的圆的位置关系; (Ⅲ)若点是椭圆:上的任意一点,是椭圆的一个焦点,探究以为直径的圆与以椭圆的长轴为直径的圆的位置关系.
(本小题满分14分) 已知等差数列的公差大于0,且是方程的两根,数列的前项的和为,且. (Ⅰ)求数列,的通项公式; (Ⅱ) 记,求证:; (Ⅲ)求数列的前项和.
(本小题满分12分) 如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点. (Ⅰ)求证:AC⊥BC1; (Ⅱ)求二面角的平面角的正切值.
(本小题满分12分) 将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为,第二次出现的点数为,设复数. (Ⅰ)求事件“”为实数”的概率; (Ⅱ)求事件“”的概率.