在直角坐标系中,射线OA: x-y=0(x≥0),OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.(1)当AB中点为P时,求直线AB的方程;(2)当AB中点在直线上时,求直线AB的方程.
给定抛物线,是抛物线的焦点,过点的直线与相交于、两点,为坐标原点.(1)设的斜率为1,求以为直径的圆的方程;(2)设,求直线的方程.
已知.(1)若,求曲线在点处的切线方程;(2)若 求函数的单调区间;(3)若不等式恒成立,求实数的取值范围.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O的割线,AC=AB.(1)证明:AC2=AD·AE(2)证明:FG∥AC
在中,内角所对边长分别为,,.(1)求;(2)若的面积是1,求.
设.(1)若曲线在点处的切线方程为,求的值;(2)当时,求的单调区间与极值.