给定抛物线,是抛物线的焦点,过点的直线与相交于、两点,为坐标原点.(1)设的斜率为1,求以为直径的圆的方程;(2)设,求直线的方程.
(直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).(1)求曲线的离心率;(2)求在k=0,0<b<1的条件下,S的最大值;(3)当|AB|=2,S=1时,求直线AB的方程.
如图,已知抛物线的方程为,过点M(0,m)且倾斜角为的直线交抛物线于A(x1,y1),B(x2,y2)两点,且(1)求m的值(2)(文)若点M分所成的比为,求直线AB的方程(理)若点M分所成的比为,求关于的函数关系式。
已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C:(p>0)的顶点关于直线l的对称点在该抛物线上.(Ⅰ)求抛物线C的方程;(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若(O为原点,A、B异于原点),试求点N的轨迹方程.
已知A,B是抛物线上的两个动点,为坐标原点,非零向量满足.(Ⅰ)求证:直线经过一定点;(Ⅱ)当的中点到直线的距离的最小值为时,求的值.
双曲线的左、右焦点分别为F1、F2,O为坐标原点,点A在双曲线的右支上,点B在双曲线左准线上,(1)求双曲线的离心率e;(2)若此双曲线过C(2,),求双曲线的方程;(3)在(2)的条件下,D1、D2分别是双曲线的虚轴端点(D2在y轴正半轴上),过D1的直线l交双曲线M、N,的方程。