高中某班一共有40名学生,设计算法流程图,统计班级数学成绩良好(分数>80)和优秀(分数>90)的人数.
已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14.(I)求{an}的通项公式;(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.
已知函数f(x)=2sinxcosx-2cos2x+l.(I)求f(x)的最小正周期;(Ⅱ)若∈(0,),且f()=1,求的值。
若无穷数列满足:①对任意,;②存在常数,对任意,,则称数列为“数列”.(Ⅰ)若数列的通项为,证明:数列为“数列”;(Ⅱ)若数列的各项均为正整数,且数列为“数列”,证明:对任意,;(Ⅲ)若数列的各项均为正整数,且数列为“数列”,证明:存在,数列为等差数列.
已知椭圆上的点到其两焦点距离之和为,且过点. (Ⅰ)求椭圆方程;(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,,若,求△的面积.
已知,函数.(Ⅰ)当时,求的最小值;(Ⅱ)若在区间上是单调函数,求的取值范围.