已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆C的方程;(2)设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;(3)在(2)的条件下,证明直线与轴相交于定点.
已知圆C:,其中为实常数. (1)若直线l:被圆C截得的弦长为2,求的值; (2)设点,0为坐标原点,若圆C上存在点M,使|MA|="2" |MO|,求的取值范围.
已知等差数列满足:. (1)求的通项公式; (2)若(),求数列的前n项和.
如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点. ⑴求证:AF//平面BCE; ⑵求证:平面BCE⊥平面CDE.
已知向量,,函数的最大值为6. (Ⅰ)求; (Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求在上的值域.
已知函数 (I)函数在区间上是增函数还是减函数?证明你的结论; (II)当时,恒成立,求整数的最大值; (Ⅲ)试证明: