在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(1)分别说明C1,C2是什么曲线,并求出a与b的值.(2)设当α=时,l与C1,C2的交点分别为A1,B1,当α=-时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
在△ABC中,角A,B,C所对的边分别是a,b,c,若sin2B+sin2C=sin2A+sin Bsin C,且bc=8,求△ABC的面积S.
(本题12分)已知函数. (1)求的值; (2)数列满足求证:数列是等差数列 (3),试比较与的大小.
(本题12分)已知△ABC的内角A、B、C的对边分别为,向量,且满足. (1)若,求角; (2)若,△ABC的面积,求△ABC的周长.
(本题12分)已知数列的前n项和为满足:. (1)求证:数列是等比数列; (2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.
(本题12分)在中,a、b、c分别为角A、B、C的对边,若. (Ⅰ)求角A的度数; (Ⅱ)若,,求边长b和角B的值.