已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.(1)当线段AB的中点在直线上时,求直线的方程;(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.
已知函数(1)求函数f(x)的最小值和最小正周期;(2)设△ABC的内角的对边分别为a,b,c且=,,若向量共线,求的值.
若点G到ABC三个顶点的距离的平方和最小,则点G就为ABC的重心。已知ABC的三个顶点分别为A(3,3,1),B(1,0,5),C(-1,3,-3),求ABC的重心的坐标。
已知A(1,0,1),B(2,-1,0),求线段AB的中垂面的方程。
球到两定点A(2,3,0),B(5,1,0)距离相等的点P的坐标满足的条件。
如下图,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,,0),点D在平面yoz上,且BDC=900,DCB=300,求点D的坐标。