已知函数 f x = ln x + k e x 为常数, e =2.71828…是自然对数的底数),曲线 y = f x 在点 1 , f 1 处的切线与 x 轴平行. (Ⅰ)求 k 的值; (Ⅱ)求 f x 的单调区间; (Ⅲ)设 g x = x f x ,其中 f ` x 为 f x 的导函数.证明:对任意 x > 0 , g x < 1 + e - 2 .
证明函数在上是增函数。
某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?
函数在区间上有最大值,求实数的值.
设与分别是实系数方程和的一个根,且 ,求证:方程有仅有一根介于和之间.
用定义证明:函数在上是增函数.