已知函数 f x = ln x + k e x 为常数, e =2.71828…是自然对数的底数),曲线 y = f x 在点 1 , f 1 处的切线与 x 轴平行. (Ⅰ)求 k 的值; (Ⅱ)求 f x 的单调区间; (Ⅲ)设 g x = x f x ,其中 f ` x 为 f x 的导函数.证明:对任意 x > 0 , g x < 1 + e - 2 .
已知函数 (Ⅰ)若,试确定函数的单调区间; (Ⅱ)若,且对于任意,恒成立,试确定实数的取值范围; (Ⅲ)设函数,求证:.
规定,其中x∈R,m是正整数,且,这是组合数(n、m是正整数,且m≤n)的一种推广. (1) 求的值; (2) 设x>0,当x为何值时,取得最小值? (3) 组合数的两个性质; ①. ②. 是否都能推广到(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
已知函数f(x)=lnx-. (1)当时,判断f(x)在定义域上的单调性; (2)若f(x)在[1,e]上的最小值为,求的值.
求证:..
已知在时有极值0。 (1)求常数 的值; (2)求的单调区间。 (3)方程在区间[-4,0]上有三个不同的实根时实数的范围。