在平面直角坐标系 x o y 中,经过点 0 , 2 且斜率为 k 的直线 l 与椭圆 x 2 2 + y 2 = 1 有两个不同的交点 P 和 Q . (Ⅰ)求 k 的取值范围; (Ⅱ)设椭圆与 x 轴正半轴、 y 轴正半轴的交点分别为 A 、 B ,是否存在常数 k ,使得向量 → O P + → O Q 与 → A B 共线?如果存在,求 k 值;如果不存在,请说明理由.
已知直线是过点,方向向量为的直线。圆方程 (1)求直线l的参数方程; (2)设直线l与圆相交于、两点,求的值。
如图,是圆的直径,为圆上一点,,垂足为,点为圆上任一点,交于点,交于点. 求证:(1);(2).
已知函数,,. (1)若在存在极值,求的取值范围; (2)若,问是否存在与曲线和都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。
椭圆与轴负半轴交于点,为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接交于点D。 (1)如果,求椭圆的离心率; (2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。
已知在正方体中,分别是的中点,在棱上,且. (1)求证:; (2)求二面角的大小.